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Abstract— The use of error-correction codes (ECCs) with
advanced correction capability is a common system-level strategy
to harden the memory against multiple bit upsets (MBUs).
Therefore, the construction of ECCs with advanced error cor-
rection and low redundancy has become an important problem,
especially for adjacent ECCs. Existing codes for mitigating MBUs
mainly focus on the correction of up to 3-bit burst errors. As the
technology scales and cell interval distance decrease, the number
of affected bits can easily extend to more than 3 bit. The previous
methods are therefore not enough to satisfy the reliability
requirement of the applications in harsh environments. In this
paper, a technique to extend 3-bit burst error-correction (BEC)
codes with quadruple adjacent error correction (QAEC) is pre-
sented. First, the design rules are specified and then a searching
algorithm is developed to find the codes that comply with those
rules. The H matrices of the 3-bit BEC with QAEC obtained
are presented. They do not require additional parity check bits
compared with a 3-bit BEC code. By applying the new algorithm
to previous 3-bit BEC codes, the performance of 3-bit BEC is
also remarkably improved. The encoding and decoding procedure
of the proposed codes is illustrated with an example. Then,
the encoders and decoders are implemented using a 65-nm library
and the results show that our codes have moderate total area and
delay overhead to achieve the correction ability extension.

Index Terms— Burst error-correction codes (ECCs), ECC,
multiple bit upset (MBU), memory, quadruple adjacent error
correction (QAEC).

I. INTRODUCTION

RELIABILITY is an important requirement for space
applications [1]. Memories as the data storing compo-

nents play a significant role in the electronic systems. They are
widely used in the system on a chip and application-specific
integrated circuits [2], [3]. In these applications, memories
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Fig. 1. Memory cell area of different technology (cell area shape is simplified
to a square, and Length is the length of side).

account for a large portion of the circuit area [4]. This makes
memories suffer more space radiation than other components.
Therefore, the sensitivity to radiation of memories has become
a critical issue to ensure the reliability of electronic sys-
tems. In modern static random access memories (SRAMs),
radiation-induced soft errors in the form of the single event
upset (SEU) and multiple bit upset (MBU) are two promi-
nent single event effects [5]. As semiconductor technology
develops from the submicrometer technology to the ultradeep
submicrometer (UDSM) technology, the size of memory cells
is smaller and more cells are included in the radius affected
by a particle [6], [7] as shown in Fig. 1.

When a particle from a cosmic ray hits the basic memory
cell, it generates a radial distribution of electron–hole pairs
along the transport track [8]. These generated electron–hole
pairs can cause soft errors by changing the values stored in the
memory cell leading to data corruption and system failure [9].
For the transistors with a large feature size, a radiation event
just affects one memory cell, which means that only the SEU
occurs. In this case, the use of single error-correction (SEC)-
double error-detection (DED) codes [10] is enough to protect
the memory from radiation effects.

As the feature size enters into DSM range, the critical
charge keeps decreasing and the area of the memory cell scales
down for each successive technology node. This makes more
memory cells affected by a particle hit as shown in Fig. 2.
For the CMOS bulk technology, with the cell-to-cell spacing
decreasing, the electron–hole pairs generated in the substrate
can diffuse to nearby cells and induce MBUs [11]–[14]. This
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Fig. 2. Schematic description of memory cells included in the radiation
effect with variation of the technology node.

compares with the FDSOI technology, which isolates tran-
sistors and limits the multicollection mechanism. Therefore,
the multicollection mechanism is more prominent for a bulk
technology, and the MBU probability is higher [15]–[18].
To protect against MBUs, ECCs that correct adjacent bit
errors [19]–[24] or multiple bit errors [25]–[27] are utilized.
Although multiple bit error-correction codes (ECCs) can cor-
rect multiple bit errors in any error patterns not limited to the
adjacent bits, the complexity of the decoding process and the
limitation of the code block size limit their use. Meanwhile,
from the generation principle of MBUs in [28], the type of the
MBUs depends on the initial angle of incidence and scattering
angle of the secondary particles. Based on this, adjacent bit
errors are dominant error patterns among the multiple bit
errors. Therefore, adjacent bits correction ECCs become pop-
ular in memory-hardened designs. Many codes are proposed,
and the capability of adjacent bits correction mainly focuses
on the double adjacent error correction (DAEC) [19]–[22],
triple adjacent error correction (TAEC), and 3-bit burst error-
correction (BEC) [23]. An alternative to codes that can correct
adjacent errors is to use an SEC or SEC-DED code combined
with an interleaving of the memory cells. Interleaving ensures
that cells that belong to the same logical word are placed
physically apart. This means that an error on multiple adjacent
cells affects multiple words each having only one bit error
that can be corrected by an SEC code. As noted in previous
studies, interleaving makes the interconnections and routing
of the memory more complex and it will lead to an increase
area and power consumption or limitations in the aspect
ratio [19], [20]. Therefore, whether it is better to use SEC
plus interleaving or a code that can correct adjacent errors
will be design-dependent and both alternatives are of interest.

As the technology comes to the UDSM, the area of the
memory cell keeps further decreasing and even memories
having atomic-dimension transistors appear. The ionization
range of ions with the order of magnitude in micrometer can
include more memory cells in the word-line direction as shown
in Fig. 2 than the three bits previously considered [29]. This
means that the SEC-DAEC-TAEC codes may not be effective
to ensure the memory reliability. Codes with more advanced
correction ability are demanded. For example, codes designed
with low redundancy for SEC-DAEC-TAEC and 3-bit BEC are
presented in [23]. Therefore, extending the correction ability
to quadruple adjacent bit errors would be of interest, especially
if it can be done without adding extra parity bits.

In this paper, we present an improvement of 3-bit BEC
codes to also provide quadruple adjacent error correc-
tion (QAEC). The code design technique for the QAEC with

low redundancy is specified from two aspects: 1) error space
satisfiability; and 2) unique syndrome satisfiability. Codes with
QAEC for 16, 32, and 64 data bits are presented. From
the view of the integrated circuits design, two criteria have
been used to optimize the decoder complexity and decoder
delay at the ECCs level: 1) minimizing the total number
of ones in the parity check matrix and 2) minimizing the
number of ones in the heaviest row of the parity check matrix.
Additionally, based on the traditional recursive backtracing
algorithm, an algorithm with the function of weight restriction
and recording the past procedure is developed. The new algo-
rithm not only reduces the cost of program run time, but also
remarkably improves the performance of previous 3-bit BEC
codes. The encoders and decoders for the QAEC codes are
implemented in Verilog hardware description language (HDL).
Area overhead and delay overhead are obtained by using a
TSMC bulk 65-nm library. Compared with the previous 3-bit
BEC codes, the area and delay overhead is moderate to achieve
the correction ability extension.

The rest of this paper is organized as follows. In Section II,
the rules of binary block linear codes for encoding and decod-
ing are briefly described. The detailed code design technique
for QAEC codes is presented in Section III. In Section IV,
the improved searching algorithm is presented and the search-
ing tool is developed. In Section V, the QAEC codes for 16, 32,
and 64 data bits are presented. The procedure of encoding and
decoding for QAEC codes is discussed and illustrated with an
example in Section VI. In terms of area and delay overhead,
the comparison with previous 3-bit BEC codes is performed
in Section VII that also discusses the benefits in reliability.
Finally, conclusions are summarized in Section VIII.

II. BINARY BLOCK LINEAR CODES

In previous works, codes for SEC-DAEC-DED,
SEC-DAEC-TAEC, and 3-bit BEC have been proposed.
All of them are binary linear block codes. The process used
to design these codes is based on some rules for linear block
codes construction. In this paper, the proposed codes are also
binary linear block codes and obey similar construction rules.
Normally, the binary codes are described by the number of
data-bits, k, redundancy bits, (n − k), and the block size
of the encoded-word, n. An (n, k) code is defined by its
generator matrix G or parity check matrix H in

G = [Pk×(n−k) · Ik×k ] H = [PT · I(n−k)] (1)

where Ik×k is the identity matrix, P is the matrix with size
k × (n − k), and PT is the transpose of P. In the encoding
process, the generator matrix G is used to encode the data bits
through the process in

v = u · G (2)

where u(u0, u1, . . . , uk−1) are the data bits to be encoded, and
v(v0, v1, . . . , vn−1) is the codeword. In the decoding process,
the parity check matrix H is used to decode the received
codeword through the process in

S = r · H T (3)
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where r(r0, r1, . . . , rn−1) is the received codeword,
S(s0, s1, . . . , sn−k−1) is the syndrome, and a significant
parameter for correcting errors. The errors injected into the
received code can be described by using

r = v + e (e0, e1, . . . , en−1) (4)

where e (e0, e1, . . . , en−1) is the error vector indicating that
an error occurs in the ith bit when ei = 1. When multiple bit
errors occur in the received codeword r with the error vector
e = (e0, e1, . . . , en−1), the syndrome of the code considering
the error vector in decoding process can be calculated by the
method in

S = e · H T . (5)

This equation formulates the relationship between the syn-
drome and the corresponding error pattern. Considering the
detailed structure of the parity matrix H, when one error occurs
in the ith bit, the corresponding syndrome is equal to the ith
column vector. When errors occur in the ith bit and the jth bit,
the corresponding syndrome is equal to the xor result of the ith
column vector and the jth column vector. Therefore, if one
error can be corrected or detected, it obeys the following rules.

1) Correctable Restriction: The corresponding syndrome
vector is unique in the set of the syndromes.

2) Detectable Restriction: The corresponding syndrome
vector is nonzero.

III. CODE DESIGN TECHNIQUE

In this section, we discuss the code design technique for
3-bit BEC with QAEC. The approach used is based on
syndrome decoding and the analysis of the requirements
in terms of parity check bits and the formulation of the
problem is similar to the one used in some previous studies
like [23] and [30]. The process used to design QAEC codes
can be divided into error space satisfiability problem and
unique syndrome satisfiability. Section III-A explains the error
space satisfiability problem, and Section III-B is the unique
syndrome satisfiability problem.

A. Error Space Satisfiability

For a code with k data bits and c check bits, its input can
represent 2k binary values. If one error occurs, it has k + c bit
positions for a single error with output space of (k + c) · 2k

values. If adjacent errors occur, it has k + c − 1 bit positions
for double adjacent errors with output space of (k + c − 1) ·2k

values, (k + c − 2) bit positions for triple adjacent errors with
output space of (k + c − 2) · 2k values, . . . , (k + c − (N − 1))
bit positions for N adjacent errors with output space of (k +
c − (N − 1)) ·2k values. If almost adjacent errors occur, it has
(k +c−2) bit positions for errors in 3-bit window with output
space of (k + c − 2) · 2k values, (k + c − 3) bit positions
for each type of errors in 4-bit window with output space of
(k + c − 3) · 2k values. To obtain the codes that can correct
the errors with certain fault types, the sum of the output space
value of error patterns should be less than or equal to the
whole output space value 2k+c .

TABLE I

MINIMUM CHECK BIT AND SYNDROME CONDITION

For the proposed code, to correct 3-bit burst and quadruple
adjacent errors, the total condition of the error patterns is
(k + c − 3) + (k + c − 2) + (k + c − 1) + (k + c) + (k + c − 2),
respectively, for quadruple adjacent errors, triple adjacent
errors, double adjacent errors, single errors, and 3-bit almost
adjacent errors. Based on the error space satisfiability princi-
ple, the relation between the space of the correct codeword
and the space of the erroneous codeword can be derived
from

2k(5(k + c) − 8 + 1) ≤ 2k+c. (6)

Based on (6), the minimum number of check bits used
for 16, 32, and 64 data bits is shown in Table I. Meanwhile,
the available syndromes and the ones needed in the best case
to correct 3-bit burst and quadruple adjacent error are also
shown in Table I.

Here, we should note that the number of parity check bits
needed is the same as for 3-bit BEC codes [23].

In this section, we discussed the error space satisfiability
issue of the correctable errors. The number of check parity
bits used for the proposed code should meet the requirement
of (6). This restricts the check bit number and the minimum
size of the dimension of H matrix. The issue of the column
vector selection for the unique syndrome of a correctable error
is discussed in Section III-B.

B. Unique Syndrome Satisfiability

From the view of binary block linear codes, if a type of
error patterns can be corrected, the syndrome of individual
error patterns should be unique. For the proposed code,
the error patterns are (. . . , 1, . . .) for SEC, (. . . , 11, . . .) for
DAEC, (. . . , 111, . . .) for TAEC, (. . . , 1111, . . .) for QAEC,
and (. . . , 101, . . .) for 3-bit almost adjacent errors correction.
Therefore, the unique syndrome satisfiability can be expressed
by

S0i �= S0 j , S1i �= S1 j , S2i �= S2 j (7)

S3i �= S3 j , S4i �= S4 j (8)

S0i �= S1 j �= S2k �= S3l �= S4m (9)

where S0i is the syndrome for single bit error, S1i is the
syndrome for double adjacent bit errors, S2i is the syndrome
for triple adjacent bit errors, S3i is the syndrome for 3-bit
almost adjacent bit errors, and S4i is the syndrome for quadru-
ple adjacent bit errors. The syndrome variables S0i , S1i , S2i ,
S3i , and S4i are linear combinations of the H matrix columns
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obeying the rules in

S0i = hi (10)

S1i = hi ⊕ hi−1 (11)

S2i = hi ⊕ hi−1 ⊕ hi−2 (12)

S3i = hi ⊕ hi−2 (13)

S4i = hi ⊕ hi−1 ⊕ hi−2 ⊕ hi−3 (14)

where i , j ∈ [1, n], i �= j . Equations (10)–(14) indicate the
detail relation between the syndromes and the columns. It is
also used to design the circuits of syndrome calculation block.

The code design is a kind of Boolean satisfiability problem.
Normally, the solution of this problem is based on the recursive
backtracing algorithm, which is presented in Section IV. Here,
from the view of the integrated circuits design, two criteria are
considered to optimize the target codes.

1) Smallest Hamming Weight of H: This criteria commonly
indicates that the solution can be completed by using the
lowest number of the logic gates in the synthesis process of
the encoder and decoder.

2) Smallest Hamming Weight of the Heaviest Row
of H : Logic depth in the encoding and decoding process
depends on the logic path with the largest delay. The smallest
hamming weight in the heaviest row can decrease the delay
of the encoder and decoder.

With these restrictions discussed previously, based on the
algorithm in Section IV, the solution for 3-bit BEC with QAEC
codes can be found.

IV. SEARCHING ALGORITHMS AND TOOL DEVELOPMENT

In this section, an algorithm is proposed to solve the
Boolean satisfiability problem based on the discussion in the
former section. Based on the algorithm, a code optimization
tool is developed to obtain the target H matrix with custom
optimization restrictions. The introduction of the algorithm is
divided into two subsections. In Section IV-A, the basic part
of the algorithm is introduced to find the solutions meeting
the requirement of the Boolean satisfiability. In Section IV-B,
based on the basic part, the method with column weight
restriction is designed to force the optimization process to use
as few ones as possible, thus optimizing the total number of
ones in the matrix and the number of ones in the heaviest
row. This optimized version of the algorithm has been used to
obtain all the codes presented in this paper.

A. Basic Part of Code Design Algorithm

In order to construct the expected codes, the first step is to
ensure the number of the check bits. From the aspect of low
redundancy, the number of the check bits is set to the values
shown in Table I. The number of the check bits is seven for
codes with 16 data bits, eight for codes with 32 data bits, and
nine for codes with 64 data bits.

The main idea of the algorithm is based on the recursive
backtracing algorithm. At first, an identity matrix with block
size (n − k) is constructed as the initial matrix, and the
corresponding syndromes of the error patterns are added
to the syndrome set. Then, a column vector selected from

Fig. 3. Flow of code design algorithm.

the 2n−k − 1 column candidates is added to the right side
of the initial matrix. This process is defined as column-
added action. Meanwhile, the new syndromes which belong
to the new added column are calculated. If none of new
syndromes is equal to the elements in a syndrome set, the
column-added action is successful and the corresponding new
syndromes are added into the syndrome set. The base-matrix
is updated to the previous matrix with the added column.
Otherwise, the column-added action fails and another new
column from the candidates is selected. If all the candidates
are tried and the column-added action still fails, one column
from the right side of previous matrix and the corresponding
syndromes are reduced from the base-matrix and the syndrome
set, respectively. Then, the algorithm continues the column-
added action until the matrix dimension reaches the expected
value. The code design algorithm flow is shown in Fig. 3.

Normally, the recursive backtracing algorithm demands a
large amount of computing resources and computing time.
In order to accelerate the computing speed of the algorithm
operation, firstly, we adopt the decimal operation instead
of the matrix operation by conversing the column vectors
into decimal numbers. Even so, the algorithm completing the
execution of all conditions is not possible. In general, if the
code we expect exists, it is easy to obtain the first solution.
With different optimization criteria, the algorithm can get
better solutions. However, searching the best solution requires
the complete result of the whole searching process, which is
in most cases, unfeasible with today’s computing resources.
Therefore, it is more practical to use the best result obtained
in a reasonable computation time. To be consistent with [23],
that time was set to one week for all the results presented in
this paper.
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Fig. 4. Restriction of the column weight.

B. Optimization Part of Code Design Algorithm

For both optimization criteria mentioned before, the column
used to construct the matrix should have as low weight as
possible. In this case, the weight of the used column is
restricted so as to minimize the weight of the matrix and
speed up the process of finding better solutions. The method
of column weight restriction for 3-bit BEC codes is shown
in Fig. 4, where Ai is the available minimum weight of the
column. Through the control of the weight of each column,
the computing operation can quickly cover the whole cycle
list by decreasing the amount of available candidates of the
columns added to the base-matrix. Although this exhausted
control can quickly narrow the searching scope, it is unwise
to use it for all the bits as it can lead to missing better
solutions due to harsh restriction. With the proposed column
weight restriction method, the searching algorithm with more
optimization criteria for the columns can find the solutions
more effectively. The performance of the new finding process
is remarkably effective for codes with small block size. When
the number of data bits reaches 32 or 64, the computing time
is still huge amount. Here, a function of recording the past
procedure is also developed with the column weight restriction
method to shorten the time cost of searching the target codes.
The detailed algorithm flow is shown in Fig. 5.

At the initialization step, all the column weight restrictions
are set to (n − k). Then, A0 is set to 2, which means that the
number of 1 in the corresponding column is 2. The searching
algorithm with column weight restriction starts to find the
solution. If the solution exists, record and update the status
of the bit restricted and shift to the next bit column weight
setting. Otherwise, releases the column weight restriction to
Ai = Ai + 1. With the program constraints increasing,
the target code is close to appear.

To prove the performance of the algorithm proposed in this
paper, we apply the algorithm to the finding process of 3-bit
BEC in [23]. Compared with the presented codes in [23],
codes with more advanced performance are found by using the
mentioned algorithm. The performance comparison is shown
in Table II. The value in brackets of “Smallest Total Ones”
represents the number of total ones. The value in brackets of
“Smallest Heaviest Row” represents the number of one in the
heaviest row.

From Table II, it can be observed that the new algorithms
are able to find better solutions than the existing algorithms

Fig. 5. Flow of algorithm with column weight restriction and past procedure
record.

TABLE II

PERFORMANCE OF PROPOSED ALGORITHM FOR 3-bit BEC CODES

such as the one used in [23]. Therefore, they can be applied for
the finding process of the QAEC codes. The solutions found
for QAEC codes are presented Section V.

V. PROPOSED CODES

In terms of computing time, it is possible for QAEC codes
with 16 data bits to have access to all the solutions, but it
is impossible for QAEC codes with 32 and 64 data bits.
Therefore, in this paper, the best solutions are presented for
QAEC codes with 16 data bits and the best solutions found
in a reasonable time (one week) using the proposed searching
algorithm are presented for QAEC codes with 32 and 64 data
bits. In terms of the two optimization criteria mentioned in
Section III, for codes (23, 16), the two best parity check
matrices are shown in Figs. 6 and 7 with both criteria best
optimized. The parity check matrix for (40, 32) optimized to
reduce the total number of ones is shown in Fig. 8 and the
parity check matrices for (40, 32) optimized to reduce the
maximum number of ones in a row is shown in Fig. 9. For
codes (73, 64), the solutions obtained with both criteria better
optimized are the same. The matrix is shown in Fig. 10.

VI. PROCEDURE OF ENCODING AND DECODING

FOR QAEC CODES

In this section, we elaborate on the encoding and decoding
procedure of the proposed 3-bit BEC-QAEC codes. The fun-
damental theory of encoding and decoding were discussed in
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Fig. 6. Best parity check matrix for the (23, 16) 3-bit burst with QAEC
optimized to reduce the total number of ones and the maximum number of
ones in a row.

Fig. 7. Best parity check matrix for the (23, 16) 3-bit burst with QAEC
optimized to reduce the total number of ones and the maximum number of
ones in a row.

Fig. 8. Parity check matrix for the (40, 32) 3-bit burst with QAEC optimized
to reduce the total number of ones.

Fig. 9. Parity check matrix for the (40, 32) 3-bit burst with QAEC optimized
to reduce the maximum number of ones in a row.

Fig. 10. Parity check matrix for the (73, 64) 3-bit burst with QAEC optimized
to reduce the total number of ones and the maximum number of ones in a
row.

Section II. Here, an example for 16 data bits is illustrated
in Fig. 11 with the H matrix used in Fig. 6. Based on
the structure of the parity check matrix, the check bits are
calculated by the corresponding data bits. The new encoded
codeword, the combination of check bits and data bits is stored
in the memory. When the particles hit the memory resulting
in MBUs, the contents of affected memory cells are flipped.
Here, to elaborate on the correction ability of QAEC codes,
quadruple adjacent bits are flipped on D2, D3, D4, and D5.
In the decoding process, the syndrome is calculated using the
stored check bits and data bits and the structure of the parity
check matrix. Through the corresponding relationship between
the syndrome and the XOR result of the columns mentioned in
Section II, the flipped bits can be located. With the flipped bits
inverted, the errors from the storage stage in the memory are
effectively corrected. This is the whole procedure of encoding
and decoding for the proposed QAEC codes.

Fig. 11. Procedure of encoding and decoding for QAEC codes.

VII. EVALUATION AND COMPARISON

In this section, we first compare the complexity and imple-
mentation cost of the proposed codes against existing 3-bit
BEC codes [23]. Then, in Section VII-B, the potential benefits
in terms of reliability are discussed.

A. Complexity and Implementation Cost

The comparison is implemented from two aspects. One
is the comparison of redundancy and complexity and the
other one is the comparison of implementation overhead on
area and delay. The results for each solution are summarized
in Table III, where TS stands for the condition that total
number of ones in H is the smallest, and HRS stands for the
condition that the number of ones in the heaviest row of H is
the smallest.

In the redundancy and complexity part, the proposed codes
hold the same number of check bits with the previous codes
in [23]. Although the new codes are optimized to have more
advanced correction ability, the number of parity check bits
is unchanged and therefore the area used for check bits in
memories is still the same as before. However, the weight
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TABLE III

OVERHEAD COMPARISON OF THE PROPOSED CODES TO 3-bit BEC CODES [23]. AREA EXPRESSED IN µm2 AND DELAY IN NANOSECONDS

of H matrix and the weight of heaviest row increase with the
improvement of correction ability. These make the encoding
and decoding process more complex. But in terms of correc-
tion ability improved, this complexity increase is reasonable.
The details of this complexity increase will be evaluated in
the following comparison between area and delay.

The encoders and decoders have been modeled in Verilog
and synthesized for a TSMC bulk 65-nm library. To obtain a
better comparison, the synthesis is done twice for each code
with different synthesis constraints optimizing area and delay,
respectively. The results are presented in Table III. As for each
word length, there are two codes (total number of ones and
heaviest row), to compare the encoder and decoder complexity
of the proposed codes with those presented in [23], for each
parameter code with the best result is used. Focusing on 16-bit
data words, for area optimization, the proposed codes require
an area overhead of 2.8% for the encoder and of 19.6% for
the decoder. The area overheads for 32- and 64-bit data words
are 4.3% and 23.2% for the encoder and 25.6% and 26.7% for
the decoder. This suggests that the overheads tend to increase
with the word size. It is worth noticing that the area of the
encoder and decoder will be in many cases small compared
with that of the memory. Therefore, the area overheads will
be much lower when looking at the entire memory design.
Turning now to the delay, the oveheads for the encoder are
25%, 18%, and 18% for 16, 32, and 64 bit data words. For
the decoder, the overheads are lower: 3.8%, 10%, and 6.3%
again for 16, 32, and 64 bit data words. This is interesting as
the decoder delay is typically larger than that of the encoder
and is the limiting factor for speed in an ECC.

As a summary, the proposed codes with advanced correction
ability keep the redundancy unchanged, but have an increase in
encoding and decoding complexity. For an implementation in
the HDL and synthesized for a 65-nm library, the increase
of area and delay is moderate (less than 27% for area
and 10% or less for decoding delay) and tolerable in exchange
for a significant improvement of correction ability.

B. Reliability

The benefit that the QAEC feature provides in terms of
reliability depends largely on the error patterns that occur
in the memory and their frequency. Using that data, we can

determine the percentage of errors that can be corrected by
the ECC and those that will not be corrected. The error
patterns and frequencies in turn depend on several factors like
the technology node, the memory design, and the radiation
particles to which the memory is exposed [31], [32]. Therefore,
the reliability improvement will vary from case to case.
To provide some insight into the benefits of implementing
QAEC, we can discuss the percentage of four bit burst error
patterns that will be corrected. There are four possible error
patterns for a four bit burst error: 1001, 1011, 1101, and 1111,
where “1” means that an error has occurred in that cell and 0
that there is no error as before. The QAEC corrects only the
last one and thus the percentage of four bit burst errors that
are corrected will be large when the 1111 pattern is the most
frequent one. In that case, the proposed codes could remove
most of the four bit burst errors. On the other hand, if the
other patterns are much more frequent, the benefit of using
QAEC will be low. In this paper, we have assumed that the
quadruple adjacent error was the most common for the four bit
burst error patterns as reported for some memories [31], [33].
In particular, in [33], the four adjacent bit error pattern is
seventh most common MCU pattern observed in the configu-
ration memory of a modern Xilinx FPGA and the only four
bit burst pattern that is among the ten most frequent ones.
In those cases, the QAEC will provide significant benefits.
For memories or environments on which another of the four
patterns is dominant, the proposed code design algorithm can
be used to provide codes that are 3-bit BEC and that can also
correct that four bit burst error-dominant pattern. Therefore,
the benefit will again be significant. Finally, if all the four bit
burst error patterns have a similar frequency, then the proposed
codes can eliminate one fourth of the four bit burst error
patterns. This will be the worst case for the proposed codes
and it can be observed that even in this scenario, the reduction
in the four bit burst errors is still significant. As a summary,
the benefit that the proposed codes can provide for a given
memory in a given environment needs to be assessed based
on the error patterns and frequencies that are obtained as part
of radiation testing. The proposed codes will be useful when
there is a relevant number of four bit burst error patterns and
especially if they are concentrated in one of the four possible
patterns.
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VIII. CONCLUSION

In this paper, a technique to extend the 3-bit BEC codes
with the QAEC is presented. The proposed codes have the
same redundancy as the previous 3-bit BEC codes [23].
To accelerate the searching process of target matrices, a new
algorithm with column weight control and recording function
is proposed. Based on the proposed algorithm, a searching tool
is developed to execute the searching process automatically.
To prove the validity of the proposed algorithm, it is applied
to the previous 3-bit BEC codes [23] and the codes are
remarkably improved on the two optimization criteria. Then,
the proposed algorithm is used to find the solution for the
QAEC. The complete solution searching process is finished
for 16 data bits and the searching process using optimization
algorithm is carried out for 32 and 64 data bits. Therefore,
in this paper, the best solutions are presented for 16 data bits
and the best solutions found in a reasonable computation time
are presented for 32 and 64 data bits. The encoder and decoder
of the proposed codes are implemented by using the HDL and
synthesized for a 65-nm library. The overhead of area and
delay is moderate versus previous 3-bit BEC codes [23]. This
suggests that the proposed 3-bit BEC with QAEC codes can be
effectively used by designers to protect the SRAM memories
from radiation effect and mitigate the MBUs that affect up
to four adjacent bits. Finally, as noted before, the proposed
scheme could be extended to design 3-bit burst ECCs that
can correct another of the 4-bit burst error patterns instead
of the quadruple adjacent error. This can be of interest for
applications in which there is a dominant 4-bit burst error
pattern that is not the quadruple adjacent error.
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